Generic Asymptotics of Eigenvalues Using Min-plus Algebra

نویسندگان

  • Marianne Akian
  • Ravindra Bapat
  • Stéphane Gaubert
چکیده

Abstract: We consider a square matrix Aǫ whose entries have first order asymptotics of the form (Aǫ)i j ∼ ai j ǫAi j when ǫ goes to 0, for some ai j ∈ C and Ai j ∈ R. We show that under a non-degeneracy condition, the order of magnitudes of the different eigenvalues ofAǫ are given by min-plus eigenvalues of min-plus Schur complements built from A = (Ai j ), or equivalently by generalized minimal mean weights of circuits. This construction gives, in non singular cases, a graph interpretation to the slopes of the Newton polygon of the characteristic polynomial of Aǫ . It explains the order of magnitudes of eigenvalues in the perturbation formula of Lidskiı̆, Višik and Ljusternik, and it allows us to solve some cases which are singular in this theory. Copyright 2001 IFAC

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h / 04 02 09 0 v 1 [ m at h . SP ] 5 F eb 2 00 4 GENERIC ASYMPTOTICS OF EIGENVALUES AND MIN - PLUS ALGEBRA

We consider a square matrix Aǫ whose entries have asymptotics of the form (Aǫ) ij = a ij ǫ A ij + o(ǫ A ij) when ǫ goes to 0, for some complex coefficients a ij and real exponents A ij. We look for asymptotics of the same type for the eigenvalues of Aǫ. We show that the sequence of exponents of the eigenvalues of Aǫ is weakly (super) majorized by the sequence of corners of the min-plus characte...

متن کامل

Min-plus Methods in Eigenvalue Perturbation Theory and Generalised Lidskĭi-višik-ljusternik Theorem

We extend the perturbation theory of Vǐsik, Ljusternik and Lidskĭı for eigenvalues of matrices, using methods of min-plus algebra. We show that the asymptotics of the eigenvalues of a perturbed matrix is governed by certain discrete optimisation problems, from which we derive new perturbation formulæ, extending the classical ones and solving cases which where singular in previous approaches. Ou...

متن کامل

Schrödinger Operator with Periodic plus Compactly Supported Potentials on the Half-line

We consider the Schrödinger operator H with a periodic potential p plus a compactly supported potential q on the half-line. We prove the following results: 1) a forbidden domain for the resonances is specified, 2) asymptotics of the resonance-counting function is determined, 3) in each nondegenerate gap γn for n large enough there is exactly an eigenvalue or an antibound state, 4) the asymptoti...

متن کامل

Max-plus Singular Values

In this paper we prove a new characterization of the max-plus singular values of a maxplus matrix, as the max-plus eigenvalues of an associated max-plus matrix pencil. This new characterization allows us to compute max-plus singular values quickly and accurately. As well as capturing the asymptotic behavior of the singular values of classical matrices whose entries are exponentially parameteriz...

متن کامل

MATHEMATICAL ENGINEERING TECHNICAL REPORTS Inference on Eigenvalues of Wishart Distribution Using Asymptotics with respect to the Dispersion of Population Eigenvalues

In this paper we derive some new and practical results on testing and interval estimation problems for the population eigenvalues of a Wishart matrix based on the asymptotic theory for block-wise infinite dispersion of the population eigenvalues. This new type of asymptotic theory has been developed by the present authors in Takemura and Sheena (2005) and Sheena and Takemura (2007a,b) and in th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001